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1 Orthogonal bases

In this section we will generalize the example from the previous lecture. Let {v1, v2, . . . , vn} be

an orthogonal basis of the Euclidean space V . Our goal is to find coordinates of the vector u

in this basis, i.e such numbers a1, a2, . . . , an, that

u = a1v1 + a2v2 + · · ·+ anvn.

The familiar way is to write a linear system, and solve it. But since the vectors of the basis are

orthogonal, we can do the following. First, let’s multiply the expression above by v1. We’ll get:

〈u, v1〉 = a1〈v1, v1〉+ a2〈v1, v2〉+ · · ·+ 〈v1, vn〉.
But all products 〈v1, v2〉, . . . , 〈v1, vn〉 are equal to 0, so we’ll have

〈u, v1〉 = a1〈v1, v1〉,
and thus

a1 =
〈u, v1〉
〈v1, v1〉 .

In the same way multiplying by v2, v3, . . . , vn we will get formulae for other coefficients:

a2 =
〈u, v2〉
〈v2, v2〉 , . . . , an =

〈u, vn〉
〈vn, vn〉 .

Definition 1.1. The coefficients defined as

a1 =
〈u, v1〉
〈v1, v1〉 , . . . , an =

〈u, vn〉
〈vn, vn〉 .

are called Fourier coefficients of the vector u with respect to basis {v1, v2, . . . , vn}.
Moreover, we proved the following theorem:

Theorem 1.2. Let {v1, v2, . . . , vn} be an orthogonal basis of the Euclidean space V . Then for

any vector u,

u =
〈u, v1〉
〈v1, v1〉v1 +

〈u, v2〉
〈v2, v2〉v2 + · · ·+ 〈u, vn〉

〈vn, vn〉vn

This expression is called Fourier decomposition and can be obtained in any Euclidean

space, e.g. the space of continuous functions C[a, b].
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2 Projections

In this lecture we will continue study orthogonality. We’ll start now with the projection of a

vector to another vector.

©©©©©©©©*

¡
¡

¡
¡µ

A
AK

©©©©©*

wv
u

cw = projw v

The projection of the vector v along the vector w is the vector projw v = cw proportional

to w, such that u = v − cw is orthogonal to w. So, to find projection, we have to determine

the number c, and then we can simply multiply it by vector w. After that we will be able to

find the perpendicular from v onto w, i.e. u.

Since we know that u is orthogonal to w, then we can write

〈u,w〉 = 0.

But

u = v − cw,

so

〈v − cw, w〉 = 0 ⇔ 〈v, w〉 − c〈w,w〉 = 0.

From the last equality we can find c:

c =
〈v, w〉
〈w, w〉

So, the projection of the vector v along the vector w is given by the following formula:

projw v =
〈v, w〉
〈w, w〉w

The orthogonal component u is equal to

u = v − projw v = v − 〈v, w〉
〈w,w〉w

The length of this perpendicular u will be the distance between the point, corresponding to

vector v and the line, which goes through 0 with direction vector w.

Example 2.1. Let’ s find the distance from the point (1, 3) to the line y = x. The direction

vector of this line is (1, 1). So, in our terms we have the following data:

v = (1, 3), w = (1, 1).

Let’s compute projection of v along w:

projw v =
〈v, w〉
〈w, w〉w =

1 · 1 + 3 · 1
1 · 1 + 1 · 1w =

4

2
w = 2w = 2(1, 1) = (2, 2).
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Now, orthogonal component is

u = v − projw v = (1, 3)− (2, 2) = (−1, 1).

The distance d between the point and the line is equal to the length of the perpendicular, i.e.

d = ‖u‖ =
√

1 + 1 =
√

2.

So, needed distance is equal to
√

2.

This method gives us a way to find a distance between the line through the origin and the

point.

But we may want to consider more difficult problem of finding the distance between the

point and the plane, or a subspace of any other dimension!
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We will generalize our constructions. Let we have a subspace (i.e., plane) W , and we have

its orthogonal basis {w1, w2, . . . , wn}.
Theorem 2.2. The projection projW v of any vector v along W is the following vector:

projW v =
〈v, w1〉
〈w1, w1〉w1 +

〈v, w2〉
〈w2, w2〉w2 + · · ·+ 〈v, wn〉

〈wn, wn〉wn

In particular, it means, that

u = v − projW v = v −
( 〈v, w1〉
〈w1, w1〉w1 +

〈v, w2〉
〈w2, w2〉w2 + · · ·+ 〈v, wn〉

〈wn, wn〉wn

)

is orthogonal to the subspace W .

Proof. To prove it, we will multiply u by any vector wi. We’ll have:

〈u,wi〉 = 〈v, wi〉 −
( 〈v, w1〉
〈w1, w1〉〈w1, wi〉+

〈v, w2〉
〈w2, w2〉〈w2, wi〉+ · · ·+ 〈v, wn〉

〈wn, wn〉〈wn, wi〉
)

All products 〈wj, wi〉 are equal to 0 except 〈wi, wi〉. So, we have:

〈u,wi〉 = 〈v, wi〉 − 〈v, wi〉
〈wi, wi〉〈wi, wi〉

= 〈v, wi〉 − 〈v, wi〉
= 0.

So, u is orthogonal to every wi, and thus it is orthogonal to W .

So, if we have a subspace with the orthogonal basis in it, and a vector, we can compute a

distance between them. But often it happens that the basis in the subspace is not orthogonal,

so our next goal will be to develop algorithm of finding orthogonal bases.
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3 Gram-Schmidt orthogonalization process

Let we have any basis {v1, v2, . . . , vn} in the Euclidean space. We want to construct orthogonal

basis {w1, w2, . . . , wn} of this space. We will do it as follows.

w1 = v1

w2 = v2 − 〈v2, w1〉
〈w1, w1〉w1

w3 = v3 − 〈v3, w1〉
〈w1, w1〉w1 − 〈v3, w2〉

〈w2, w2〉w2

. . .

wn = vn − 〈vn, w1〉
〈w1, w1〉w1 − 〈vn, w2〉

〈w2, w2〉w2 − 〈vn, w3〉
〈w3, w3〉w3 − · · · − 〈vn, wn−1〉

〈wn−1, wn−1〉wn−1

Actually, each time we’re subtracting the projection to the space, spanned by the vectors,

already orthogonalized.

After this algorithm we will have orthogonal basis }w1, w2, . . . , wn}.

Example 3.1. Let

v1 = (1, 1,−1,−2);

v2 = (5, 8,−2,−3);

v3 = (3, 9, 3, 8).

Let’s apply the Gram-Schmidt orthogonalization process to these vectors.

w1 = v1 = (1, 1,−1,−2).

Now, let’s find w2:

w2 = v2 − 〈v2, w1〉
〈w1, w1〉w1

= (5, 8,−2,−3)− 5 · 1 + 8 · 1 + (−2) · (−1) + (−3) · (−2)

1 · 1 + 1 · 1 + (−1) · (−1) + (−2) · (−2)
(1, 1,−1,−2)

= (5, 8,−2,−3)− 21

7
(1, 1,−1,−2)

= (5, 8,−2,−3)− (3, 3,−3,−6)

= (2, 5, 1, 3).
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Now, we can find w3:

w3 = v3 − 〈v3, w1〉
〈w1, w1〉w1 − 〈v3, w2〉

〈w2, w2〉w2

= (3, 9, 3, 8)− 6 + 45 + 3 + 24

4 + 25 + 1 + 9
(2, 5, 1, 3)− 3 + 9− 3− 16

1 + 1 + 1 + 4
(1, 1,−1,−2)

= (3, 9, 3, 8)− 78

39
(2, 5, 1, 3)− −7

7
(1, 1,−1,−2)

= (3, 9, 3, 8)− 2(2, 5, 1, 3) + (1, 1,−1,−2)

= (0, 0, 0, 0).

Finally, we got:

w1 = (1, 1,−1,−2);

w2 = (2, 5, 1, 3);

w3 = (0, 0, 0, 0).

The third vector is a zero-vector, so we don’t need it. Actually, it means that vectors v1, v2 and

v3 are in the same plane, so, the basis of this plane consists of 2 vectors, and the orthogonal

basis consists of w1 and w2.

Again, this process is very general, and can be used in any Euclidean space, i.e. the space

of continuous functions C[a, b].

4 Distance between a vector and a subspace

Now when we know how to find orthogonal bases of the subspace, we can find distances between

the vector (or a point, corresponding to this vector) and a subspace, for example a plane which

goes through origin.

Let we want to find a distance between vector v and a subspace with any basis. Then

we should first orthogonalize the basis of the subspace using Gram-Schmidt orthogonalization

process, and then compute projections of v along vectors of basis. Then, subtracting projections

from v we will get a vector, which is orthogonal to the subspace. Its length will be equal to the

needed distance.

Example 4.1. Let we have a plane P in the 3-dimensional space with the following basis:

v1 = (1, 0,−1) and v2 = (−1, 1, 0). Let’s find the distance between point (1, 2, 3) and this plane.
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First we should orthogonalize the basis of the plane.

w1 = v1 = (1, 0,−1)

w2 = v2 − 〈v2, w1〉
〈w1, w1〉w1

= (−1, 1, 0)− −1

1 + 1
(1, 0,−1)

= (−1, 1, 0) +
1

2
(1, 0,−1)

= (−1

2
, 1,−1

2
).

Now we should find projection of v along this plane.

projP v =
〈v, w1〉
〈w1, w1〉w1 +

〈v, w2〉
〈w2, w2〉w2

=
1− 3

1 + 1
(1, 0,−1) +

−1
2

+ 2− 3
2

1
4

+ 1 + 1
4

(−1

2
, 1,−1

2
)

= (−1, 0, 1).

The vector, orthogonal to this plane from the point (1, 2, 3) is

u = v − projP v = (1, 2, 3)− (−1, 0, 1) = (2, 2, 2).

So, the distance is

d =
√

4 + 4 + 4 =
√

12 = 2
√

3.
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